
Information Sciences 478 (2019) 540–563

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Inner matrix norms in evolving Cauchy possibilistic clustering

for classification and regression from data streams

Igor Škrjanc

a , ∗, Sašo Blaži ̌c

a , Edwin Lughofer b , Dejan Dovžan

a

a Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana, SI-10 0 0, Slovenia
b Department of Knowledge-Based Mathematical Systems, Johannes Kepler University, Altenbergerstrasse 69, Linz, Austria

a r t i c l e i n f o

Article history:

Received 6 June 2018

Revised 11 November 2018

Accepted 17 November 2018

Available online 22 November 2018

Keywords:

Data stream

Evolving clustering

Cauchy density

a b s t r a c t

This paper presents the unification and generalization of different evolving clustering

methods based on Cauchy density. This can be done by introducing different inner ma-

trix norms to obtain different functionalities of the algorithm. This unified approach with

a general inner matrix norm is called eCauchy recursive clustering. The well-known pos-

sibilistic c-means clustering (PCM) can be seen as a special example of the proposed

eCauchy algorithm. The main motivation of the proposed method is to solve and overcome

the problems of modelling the nonlinear data streams in highly noisy environments with

frequently appearing outliers. By introducing the different inner matrix into the density

metric, the algorithm can be modified in different ways to deal with different clustering

problems, from classical classification to the preprocessing for solving regression problems.

The evolving nature of the algorithm and simple computation also make it appropriate for

dealing with big-data problems. The described eCauchy algorithm needs just a few initial

parameters such as minimal and maximal density. The algorithm incrementally changes

the structure of the model based on the flow of samples from the data stream, more

specifically it evolves the structure of the model during the operation by adding, merg-

ing, splitting and removing the clusters. This approach allows the identification of very

different clusters in size and shape and is also quite insensitive to the outliers and signif-

icant noise. In the paper, the universality of the proposed algorithm is shown on various

examples.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The basic fuzzy c-means clustering (FCM) given in [13] and generalized in [8] cannot deal with data that include many

outliers and significant noise. The main reason is the concept of membership values, which is based on normalized Euclidean

distance between the current sample and the prototypes [1] . The membership is a relative measure because the distance

between the sample and the prototype is normalized by the sum of the distances from all cluster prototypes. In [35] , the

membership value is therefore interpreted as a relative measure or relative typicality. The absolute typicality of the sample

is calculated without normalization.
∗ Corresponding author.

E-mail addresses: igor.skrjanc@fe.uni-lj.si (I. Škrjanc), edwin.lughofer@jku.at (D. Dovžan).

https://doi.org/10.1016/j.ins.2018.11.040

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.11.040
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.11.040&domain=pdf
mailto:igor.skrjanc@fe.uni-lj.si
mailto:edwin.lughofer@jku.at
https://doi.org/10.1016/j.ins.2018.11.040

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 541

1.1. Possibilistic clustering

In [24] , the possibilistic c-means (PCM) clustering algorithm was introduced to overcome the disadvantage of FCM and

in [45] an extension of the algorithm has been made, which introduce a mutual repulsion of the clusters, so that they are

forced away from each other. The main idea of this approach is to overcome the problems connected to the use of relative

membership measure, by introducing a similarity measure between the observed sample and the prototypes, which is given

as an absolute measure or typicality. All the samples that have typicality greater than the predefined threshold are typical

samples of the observed cluster and therefore belong to the cluster, whereas the others are atypical and do not belong to the

cluster. The algorithm has some disadvantages, such as sensitivity to initialization and the possible coincidence of several

prototypes in the same location when the assumed number of clusters exceeds the actual number of clusters in the dataset.

In [35] , a hybrid algorithm is proposed that combines the FCM and PCM approach. The algorithm is called possibilistic

fuzzy c-means clustering (PFCM). This is an attempt to combine both algorithms (PCM and FCM) to estimate the prototypes

of data sets as a function of the internal resemblance and external dissimilarity.

The modification, which makes the algorithm much more flexible in the sense of detecting different shapes, is given in

[34] by introducing the Mahalanobis distance as an inner norm. This modification allows for detecting the hyper-ellipsoidal

form of the clusters. The implementation of Mahalanobis distance as the similarity measure relativizes the absolute typicality

involved in the PCM algorithm.

1.2. Evolving recursive clustering for streaming data

All previously mentioned algorithms deal with batch data. To deal with the stream of data on-line the algorithms must be

able to adapt and evolve the structure of a model in an on-line/recursive manner. To accomplish that, an on-line clustering

algorithm and local model parameters adaptation algorithms are needed. The recursive partitioning/clustering algorithms

are usually derived from off-line clustering algorithms. In [14] and in [11] , an on-line Gustafson–Kessel clustering algorithm

is presented, in [2] an on-line version of subtractive clustering technique is given, in [42] a recursive method based on

Gath–Geva clustering algorithm is presented, and in [33] a recursive possibilistic clustering algorithm is derived.

The on-line partitioning/clustering technique together with some sort of on-line adaptation of consequent parts form an

on-line learning algorithm of the fuzzy model. Early development of the on-line fuzzy model learning techniques did not

adapt the parameters of membership functions. This was introduced by evolving fuzzy systems. This new methodology was

able to add new clusters to fuzzy model structure but did not adapt the membership functions’ widths. The method was

further extended to allow the adaptation of membership functions’ widths. These extensions are known as the evolving ex-

tended Takagi–Sugeno (exTS) based neuro-fuzzy algorithm and the modification of evolving Takagi–Sugeno (eTS+) algorithm

[3] .

The on-line clustering algorithms are mostly based on the Euclidean distance [10] . This results in clusters that are of a

hyper-spherical shape. Additional improvement was made by the introduction of Mahalanobis distance in the recursive and

evolving fuzzy model identification and clustering [11,14,31] . More information on evolving approaches and on-line clustering

can be found in [30] .

The algorithm, which is an extension of the basic PCM, is given in [44] and is capable of dealing with different cluster

shapes, sizes, volumes as well as noisy data with outliers in an on-line manner. It is called Gustafson–Kessel Possibilistic

Fuzzy c-Means Clustering Algorithm (GKPFCM) because the structure of the fuzzy model is evolved with an incoming data

stream. The clusters are added, merged, split and/or deleted if certain conditions are satisfied. The algorithm adapts param-

eters of the current structure if the current sample is typical for a particular, already identified cluster, i.e. the mean and the

covariance matrix of that cluster are adapted accordingly. The on-line self-organizing fuzzy modified least-squares network

(SOFMLS) is given in [20,25,41] , and a sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification

and prediction in [38] .

Recently, the concept of granules and later clouds was introduced in [4] . This concept is based on Cauchy density, but it

is not limited just to this similarity measure. The concept was further extended in [6] , where the algorithm for typicality

and eccentricity data analytics (TEDA) is introduced. This method introduces the typicality distribution functions as an al-

ternative to probability density functions in [4] . An algorithm called parsimonious network based on fuzzy inference system

(PANFIS) is presented in [36] . The main feature of PANFIS is that it can commence its learning process from scratch with an

empty rule base. The evolving participatory learning (ePL), introduced in [26] , use on-line clustering phase followed by least

square method to estimate the linear consequent parameters of Takagi–Sugeno model. The generalized smart evolving fuzzy

systems learning approach (Gen-Smart-EFS, GS-EFS) employs the generalized version of Takagi–Sugeno (TS) fuzzy systems

[31] . It induces more compact rule bases with similar or even lower model errors than the conventional TS fuzzy systems.

In this paper the Cauchy density was generalized in a way of a general inner matrix norm. The approach is called eCauchy

possibilistic clustering. Using forms of the general inner matrix norm, this approach can be used in different problems, from

classification to regression. A major difference to e.g. TEDA and others is that different norms can be integrated and therefore

different shapes and characteristics of the clusters can be induced for different learning problems. Moreover, we suggest a

holistic evolving density-based clustering approach integrating not only shape diversity of the clusters, but also methods

how to i) add, ii) merge, iii) delete and iv) split clusters in one joint recursive, incremental cluster update method.

542 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

This paper is organized as follows: after the introduction, the basics of Cauchy density of a data stream are given, some

possible different inner matrix norms are developed and presented which can be used in data stream processing and the

recursive computation of cluster covariance matrix is presented. In Section 3 the identification of input–output models is

given and in Section 4 the evolving strategies that are used in our approach are presented. In Section 5 the proposed

algorithm is illustrated on different practical examples. In 6 , the in-depth discussion of the proposed method is presented,

giving its strength and showing its weak points with respect to the existing methods from the literature. In the end, some

conclusions are made.

2. Similarity measures in streaming data

The similarity metrics between samples coming from streaming data is given by basic Cauchy density and its modifica-

tions. The Cauchy density γ j

k
is defined by a suitable kernel over the distances between the current sample z z z (k) ∈ R

q and

all the previous samples z z z
j
i

that have already been classified to a particular cluster (j th in this case) [4] :

γ j

k
=

1

1 +

∑ M j

i =1 (z z z (k) −z z z j
i
) T (z z z (k) −z z z j

i
)

M

j

j = 1 , . . . , m (1)

where M

j is the number of data samples associated with the j th cluster. The density in this form can be seen as an absolute

density of the data sample according to the other data samples in the set because of the absolute distances between the

samples.

The basic density measure based on the Euclidean distance and the generalization of this distance, which then gives

a much more powerful method, is done by introducing a positive definite inner norm matrix of the j th cluster A

A A

j into

the distance measure. The Cauchy density becomes relative because the distances are weighted in different directions with

different weights. The general expression of the weighted Cauchy density is given by

γ j

k
=

1

1 +

∑ M j

i =1 (z z z (k) −z z z j
i
) T A A A

j (z z z (k) −z z z j
i
)

M

j

(2)

Eq. (2) can be transformed into the recursive form in the case of data stream problems as follows (see Appendix A):

γ j

k
=

1

1 + (z z z (k) −μμμ j) T A

A A

j (z z z (k) −μμμ j) + T j
A

(3)

where

T j
A

=

(M

j − 1)

M

j
trace (A

A A

j ��� j) (4)

while

��� j =

1

M

j − 1

M

j ∑

i =1

(z z z j
i
−μμμ j)(z z z j

i
−μμμ j) T (5)

represents the covariance matrix of the j th cluster which has M

j samples.

It has to be stressed that the definition of the covariance matrix from Eq. (5) is not suitable for analysis of data streams.

In such cases recursive calculation of covariance matrix is needed. The algorithm can be found in Appendix B .

The density defined in Eq. (3) has the highest value when the sample z z z (k) hits the prototype μμμ j . In that case the density

becomes 1 / (1 + T
j

A
) . Since the term T

j
A

defined in Eq. (4) depends on the choice of the matrix A

A A

j and the number of input

space features, it is hard to predict the maximal value of the density given by Eq. (3) which makes the tuning of the

parameters more complicated. Therefore it is preferable to use the normalized density, where the original density from

Eq. (3) is normalized with its maximal value 1 / (1 + T
j

A
) . The maximal normalized density is equal to 1 for all inner matrix

norms and is calculated as follows:

γ j

k
=

1 + T j
A

1 + (z z z (k) −μμμ j) T A

A A

j (z z z (k) −μμμ j) + T j
A

(6)

For density calculation, distances with different inner matrix norms can be used to cope with various problems. The

normalized densities with different inner matrix norms will therefore be discussed next.

2.1. Identity inner norm

When the identity matrix I I I is chosen as the inner matrix norm, Euclidean distance is obtained [15] and the density

becomes

γ j

k
=

1 + T j
I

1 + (z z z (k) −μμμ j) T (z z z (k) −μμμ j) + T j
(7)
I

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 543

where T
j

I
=

(M

j −1)

M

j trace (��� j) . This norm is very basic but can be successfully used in different approximation and classifica-

tion problems.

2.2. Inverse covariance matrix as inner matrix norm

When the inverse of the covariance matrix (��� j) −1 of the corresponding data cluster with M

j data samples is chosen

as the inner matrix norm, the distance is called the Mahalanobis distance [15] . The matrix ��� j from Eq. (5) needs to be

invertible to use this matrix norm [7,15] . ��� j is non-singular if and only if the matrix of all centered data samples Z Z Z j has

rank q [37] . The matrix Z Z Z j is constructed from centered row samples (z z z
j
i
−μμμ j) T that form the matrix of dimension M

j × q .

It is shown in Appendix A that all the columns in Z Z Z j have zero mean (see Eq. (34)) , and therefore at least q + 1 linearly

independent samples are needed for the matrix Z Z Z j (or equivalently ��� j) to achieve full rank [37] .

Introducing the inverse covariance matrix as inner matrix norm into Eq. (3) , the expression for Cauchy relative density

based on the Mahalanobis distance is obtained:

γ j

k
=

1 +

(M

j −1)
M

j q

1 + (z z z (k) −μμμ j) T (��� j) −1 (z z z (k) −μμμ j) +

(M

j −1)
M

j q
(8)

where the term T
j

A
(Eq. (4)) in this case equals M

j −1
M

j q, since it is easy to show that trace (A

A A

j ��� j) = trace ((��� j) −1 ��� j) = q, and

q stands for the number of input space features.

The covariance matrix can be also written in its singular value decomposed form as

��� j = P P P j ��� j (P P P j) T (9)

with P P P j =

[
p p p

j
1
, p p p

j
2
, . . . , p p p

j
q

]
and ��� j being the matrix of eigenvectors and eigenvalues of ��� j

, respectively. Eigenvalues and

eigenvectors represent the shape of the corresponding cluster. The Mahalanobis distance can be therefore described in the

following form due to (9) :

(z z z (k) −μμμ j) T (��� j) −1 (z z z (k) −μμμ j) =

q ∑

r=1

(
(z z z (k) −μμμ j) T p p p j r

)2

λr
(10)

where p p p
j
r stands for the r th eigenvector and λr for the r th eigenvalue of the covariance matrix ��� j . It can be seen that the

Mahalanobis distance is the sum of normalized distances of the current data sample from the center of the cluster in the

direction of eigenvectors. The distances are normalized with appropriate eigenvalues. The term

(
(z z z (k) −μμμ j) T p p p

j
r

)
can be also

viewed as a distance to the hyperplane [16] that is defined by r th eigenvector and the cluster center μμμ j .

The benefit of using the Mahalanobis distance is that a hyper-ellipsoidally shaped cluster can be described in contrast

to the Euclidean distance with which only hyper-spherical shapes can be described [15] . The size and the shape of the

hyper-ellipsoid depends on the covariance matrix of the data in the cluster.

A very strong argument to use the Mahalanobis distance or inverse covariance matrix as inner norm is the scalability of

the data. The Mahalanobis distance is scale-invariant, whereas in the case of the Euclidean distance it is not the case.

2.3. Inverse of partial covariance matrix as inner matrix norm

In classification problems, the density based on the Mahalanobis distance can be of great use and importance. But when

dealing with regression problems the density just in the direction of certain eigenvector(s) is sometimes more important.

Latent eigenvectors play an important role in this case. For such cases, partial covariance matrix ���q
j could be used in the

computation of density. The inner matrix norm in this case is obtained from (��� j) −1 by only selecting a few eigenvectors

and their corresponding eigenvalues. This is obtained by including a square matrix Q

Q Q of dimension q × q in Eq. (9) :

(��� j
q)

−1 = P P P j (��� j) −1 Q

Q Q (P P P j) T (11)

where Q

Q Q is composed of zeros and only a few diagonal elements take the value 1. Typically, only the element (q, q) is equal

to 1; in this case, only a latent eigenvector is used in the partial covariance matrix.

The latent Mahalanobis distance, i.e. the normalized Mahalanobis distance in the direction of the least important eigen-

vector p p p
j
q (the eigenvector with the smallest eigenvalue λq) is then obtained as follows:

(z z z (k) −μμμ j) T (���q
j) −1 (z z z (k) −μμμ j) =

(
(z z z (k) −μμμ j) T p p p j q

)2

λq
(12)

The density in the latent direction then becomes

544 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Table 1

An example of different normalized densities.

Type of inner matrix norm Density at z z z (k) = μμμ + α1 σ1 p p p 1 + α2 σ2 p p p 2

Identity matrix γ1 =

1+ M−1
M (σ 2

1 + σ 2
2)

1+(α1 σ 2
1

+ α2 σ 2
2
)+ M−1

M (σ 2
1

+ σ 2
2
)

Inverse covariance matrix γ2 =

1+ M−1
M 2

1+(α2
1
+ α2

2
)+ M−1

M 2

Inverse of partial covariance matrix γ3 =

1+ M−1
M 1

1+ α2
2
+ M−1

M 1

Partial eigenvector matrix γ4 =

1+ M−1
M σ 2

2

1+ α2
2
σ 2

2
+ M−1

M σ 2
2

Normalized partial eigenvectors matrix γ5 =

1+ M−1
M

σ2
2

σ2
l

1+ α2
2

σ2
2

σ2
l

+ M−1
M

σ2
2

σ2
l

γ j

k
=

1 +

(M

j −1)
M

j 1

1 +

(
(z z z (k) −μμμ j) T p p p j q

)2

λq
+

(M

j −1)
M

j 1

(13)

Note the last factor 1 in the denominator of Eq. (13) that has changed with respect to Eq. (8) in which it was q . In general

the latent vector together with the cluster center defines a local model.

2.4. Partial eigenvector matrix as inner matrix norm

The eigenvector matrix as an inner matrix norm leads to the absolute density in the direction of the chosen, i.e., latent

eigenvector. This matrix norm is defined as follows:

A

A A

j
q = p p p j q (p p p j q)

T (14)

where p p p
j
q defines the latent eigenvector of the covariance matrix for the j th cluster with M

j samples. Usually, the direction

of the least important eigenvector p p p q is chosen because it is the normal vector to the hyperplane spanned with the other

q − 1 eigenvectors that implicitly define the model. The absolute density in the latent direction then becomes

γ j

k
=

1 +

(M

j −1)
M

j λq

1 +

(
(z z z (k) −μμμ j) T p p p j q

)2 +

(M

j −1)
M

j λq

(15)

Note the last factor λq in the denominator of Eq. (15) that has changed with respect to Eqs. (8) and (13) .

2.5. Normalized partial eigenvectors matrix as inner matrix norm

Using this inner matrix norm, the partial eigenvectors matrix is normalized with a constant variance σ 2
l
, which can be

used in the case where the variance of the samples in the latent direction can be roughly estimated. This is a free design

parameter that is kept constant throughout the evolving procedure. The matrix norm is defined as follows:

A

A A

j
q =

1

σ 2
l

p p p j q (p p p j q)
T (16)

where p p p
j
q defines the latent eigenvector of the covariance matrix for the j th cluster. The density in this case becomes

γ j

k
=

1 +

(M

j −1)
M

j

λq

σ 2
l

1 + (z z z (k) −μμμ j) T A

A A

j
q (z z z (k) −μμμ j) +

(M

j −1)
M

j

λq

σ 2
l

(17)

Such density calculation could be useful because of its ability to overcome the problems of a learning transient of covariance

matrices.

Example – Calculation of previously defined densities

To show the calculation of all five previously defined densities, a simple two dimensional example (q = 2) will be given.

Assuming the set of data samples with the mean value μμμ, the covariance matrix ���, and a number of samples M . The

covariance matrix is decomposed as ��� = P P P D

D D P P P T , where P P P = [p p p 1 p p p 2] and D

D D = diag (σ 2
1 , σ

2
2) . The trace of covariance matrix

equals trace (���) = σ 2
1

+ σ 2
2

.

Let us define a general data sample so that z z z (k) −μμμ = α1 σ1 p p p 1 + α2 σ2 p p p 2 , where α1 , and α2 stands for arbitrary scalars

as shown in Fig. 1 . The calculation of different densities are given in Table 1 . It is shown that by using different inner matrix

norms the obtained densities can be absolute or relative according to the size of clusters, i.e. their covariance matrices and

their eigenvalues.

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 545

Fig. 1. Calculation of different densities.

3. Identification of the input–output model

The principle of Cauchy density is used to partition the data space and obtain the clusters. The clusters are defined by

the center μμμ j and the covariance matrix ��� j . In regression problems, local linear models must also be identified, either by

recursive least squares method or by defining the hyper-plane that spans over the data. This approach will be shown next.

3.1. Estimation of the local model parameters with hyper-plane

The general nonlinear mapping that maps a compact set from the input space of arbitrary dimension to R can be approx-

imated by a number of approximators. Quite often, a Takagi–Sugeno model is used. Very well known are the approaches in

which the structure of the model is constant and the parameters of the model θθθ j are estimated and adapted on-line. Simul-

taneous identification of the model parameters θθθ j and partitioning of the input–output data space has also received a great

deal of attention in the literature recently. A very simple and fast way of estimating the model is an analytical approach

based on the singular value decomposition of the covariance matrices of the clusters.

The measurement vectors are composed of the input vector x x x , which could be of an arbitrary dimension and the corre-

sponding output y , which is a scalar in this case:

z z z T =

[
x x x T y

]
∈ R

q , (18)

where q is an input–output space dimension. All the information about the data lies in the covariance matrix of the cluster,

and the most important part is therefore partitioning, i.e. granulation of the input–output space to obtain the clusters that

cover the whole data space adequately. It is assumed that the input–output data in the input–output space lie along the

hyper-surface representing the input–output mapping. This assumption is usually true for a huge class of problems. Due to

the nature of the processes, disturbances, measurement noise, parasitic disturbances and other sources of errors, the data

do not lie exactly on the surface, but are spread in the vicinity of the hyper-surface. By analyzing the covariance matrices of

the clusters, the models are obtained in an explicit form. The idea originates from the definition of the hyper-plane equation

in an implicit form with the normal vector of the hyper-plane and the point lying on the hyper-plane. The normal vector n n n j

to the hyper-surface is orthogonal to the tangential hyper-plane in the center of the cluster μμμ j . This tangential hyper-plane

represents the local linear model and can be obtained in the implicit equation as follows

(
z z z −μμμ j

)T
n

n n

j = 0 (19)

The normal vector is defined as

n

n n

j = p p p j r (20)

where p p p
j
r denotes the first eigenvector of the covariance matrix ��� j that has an eigenvalue close to zero (close to noise

variance). For example, if there is one regressor in the regressor matrix that is linearly dependent on another regressor, q th

eigenvalue should be ≈ 0 and (q − 1) th eigenvalue should reflect the noise. Therefore for this case r = q − 1 .

In the case of regression problems, the regressors are usually very carefully chosen, meaning that the regressors are

linearly independent and the excitation of the process is adequate. In this way, the rank of the current covariance matrix is

q − 1 , which means that only one eigenvalue of the matrix is close to zero (close to noise variance). In this case, the normal

vector n n n j is equal to the latent eigenvector p p p
j
q .

546 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Eq. (19) represents the implicit expression of the hyper-plane of the local linear model that models the data of the j th

cluster. The output of the j th local linear model can be obtained from the explicit form of the model that is given as

y j = −
(x 1 − μ j

1
) p j

q, 1
+ · · · + (x q −1 − μ j

q −1
) p j

q,q −1

p j q,q

+ μ j
q (21)

where x x x =

[
x 1 . . . x q −1

]T
is the input vector, p p p

j
q =

[
p

j
q, 1

. . . p
j
q,q

] T
and μμμ j =

[
μ j

1
. . . μ j

q

] T
are the normal vector and the

center vector, respectively, of the j th hyper-plane. In a more compact form, the model output can be represented as follows

y j = − 1

p j q,q

(x x x − ˆ μμμ
j
) T ˆ p p p

j
q + μ j

q (22)

where ˆ μμμ j =

[
μ j

1
. . . μ j

q −1

] T
consists of the first q − 1 elements of the vector μμμ j whereas ˆ p p p

j
q =

[
p

j
q, 1

. . . p
j
q,q −1

] T
includes

the first q − 1 coefficients of the normal vector p p p
j
q .

3.2. Fuzzification of local models

Because of the nonlinear nature of the data, the normal vector to the hyper-surface changes from one operating point to

another. In the context of fuzzy approximators, the normal vector in a certain operating point is obtained by a linear com-

bination of individual normal vectors associated with individual clusters. The gains of the linear combination are obtained

from density, typicality, or membership degree of the individual clusters. Here, the typicalities associated with the clusters

are used. This leads to the following estimation of the model output:

y (k) =

∑ m

j=1 γ
j

k
y j

∑ m

j=1 γ
j

k

(23)

where m stands for the number of clusters. The problem here arises because the density γ j

k
depends on the data sample

(z z z (k)) which is not known in the case of the usual use of the model. More exactly, the first part of z z z (the input vector x x x)

is known, but the output y is unknown. This problem can be solved by projecting the typicality or density function to the

input space or by replacing the output value by the j th local model output as follows:

ˆ z z z
T =

[
x x x T y j

]
(24)

The typicalities can be replaced by the membership values obtained from the following equation:

γ j

k
= e −

1
2 (̂ z z z (k) −μμμ j) T (��� j) −1 (̂ z z z (k) −μμμ j) (25)

When using the method for classification problems, the size of the output vector is one, and the output represents the

label. The label is assigned when a cluster is created. The output of the model is calculated without fuzzification in the case

of the classification model, i.e. the output is then the label of the cluster with the highest value of density measure.

4. Evolving strategies

The evolving strategies strongly depend on the investigated problem. The problems that are commonly treated are the

classification problems in which the data from the stream are classified into the different classes and the regression prob-

lems where the identification of a process model is treated. In the case of classification problems, the data are spanned

in all directions and usually the rank of data covariance matrix equals the number of variables. In the case of regression

problems, the data can be divided into input and output variables (in our case, only one output is used) and the main goal

is to find the inner data relation between the inputs and the output. The data lie along a hyper-plane with a zero or low

variability in one or more dimensions.

The used evolving strategy also strongly depends on the nature of consecutive samples in the data stream. The prob-

lems can be basically divided into two different classes. In the first class are the problems in which the samples come from

different processes randomly. Dealing with such problems, all evolving mechanisms of adding, merging and removing the

clusters are necessary. The problems can also be solved by semi-evolving algorithms, which introduce the buffer for unclas-

sified samples, which is processed when certain conditions are met. In the second class, we have the processes in which the

consecutive samples come from processes in a certain order; they fall into the neighboring clusters and have a continuous

and smooth behavior. In this cases, the clusters arise mainly because of the nonlinearity in the process that generates the

data stream. A new cluster is added directly when certain conditions are fulfilled.

Next, the basic evolving mechanisms used in this paper are discussed, i.e. adding, removing, and merging the clusters.

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 547

Fig. 2. Basic principle of merging clusters.

4.1. Adding clusters

When dealing with classification problems the use of direct evolving adding method is the most common. This means

that each sample is either added to one of the existing clusters or a new cluster is initiated. The new cluster is added if

max
j

γ j

k
< 	max (26)

where 	max stands for the density threshold [4] . When a new cluster is added, the number of clusters m is incremented,

the number of elements in the new cluster is set to 1 (the current sample), and the center and the covariance matrix are

initialized as μμμ j = z z z (k) and ��� j = αI (α is a “large number” as mentioned before).

The semi-evolving adding method involves the data buffer. If the samples, which are not typical for the existing clusters

and also do not lie far away from each other, are found in the buffer, a new cluster is initiated with these data. The sample

is added to the buffer if an additional condition to the condition (26) is satisfied:

max
j

γ j

k
> 	min (27)

This means that in the indirect case the lower density threshold 	min is also defined to eliminate the samples that are very

untypical. When the buffer is full, a new cluster center and the covariance matrix are calculated from the data in the buffer.

The size of the buffer depends on the data dimension and is defined by the user.

4.2. Removing clusters

The method used to remove clusters strongly depends on the adding method used. When the indirect adding method

is used, the clusters are usually well defined, and there is very rarely the need for removing already defined clusters. If

the direct method is used, this is not the case. It can happen that a cluster is defined with just one or two samples, and

therefore, in regard to the problem nature, the clusters with the insufficient number of samples (M

j < q) are removed [12] .

4.3. Merging clusters

Dealing with evolving methods, the mechanism of merging is always unavoidable [22] . There are many different prin-

ciples of detecting the clusters which should be merged and also a lot of principles of merging. First, it is necessary to

determine which clusters should be merged. The procedure always tries to find the closest clusters, in predefined metrics,

to be merged. This is then repeated until the so-called close clusters exist. The basic idea of merging clusters is shown in

Fig. 2 . In our paper, the merging of clusters is not of the main interest and, therefore, we used the known method which is

proposed in [29] where the idea of homogeneity is used.

The above-mentioned merging procedure is more suitable for clustering problems. For classification and regression prob-

lems a more suitable supervised merging mechanism is presented in [12] . In the case of supervised merging, the algorithm

searches for pairs of neighborhood clusters. The algorithm then checks if the difference between the local models’ param-

eters are below a certain threshold. If this is true then the clusters are merged. In the case of classification, the labels of

clusters must be the same.

548 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Fig. 3. Basic principle of splitting a cluster.

4.4. Splitting clusters

The splitting of clusters is usually implemented in evolving algorithms to ensure that clusters with high prediction error

or clusters including different labels in classification case are split into two clusters to ensure better overall model perfor-

mance. The basic idea of splitting in the case or regression is shown in Fig. 3 . When a newly created cluster receives enough

support samples (e.g. 30 samples), sub-clusters are created by splitting the parent cluster by moving the cluster centers in

the direction of the maximal eigenvector [32,43] . The algorithm then checks the approximation error in the case of new

sub-clusters and compare it with approximation in the case of parent cluster. If splitting gives an improvement which is

above a certain threshold one of the sub-clusters replaces the parent cluster, and the other is added as a new cluster.

4.5. Computational complexity

Computational complexity is also one of important issues of the algorithm because it should be performed in real-time

on the data stream. The complexity is given in O -term notation for indicating the number of flops. The algorithm of the

recursive Cauchy algorithm with the Mahalanobis distance has a complexity of O (mq 2) where q stands for the dimensionality

of the feature space and m for the number of clusters, recursive Cauchy with Euclidean distance has complexity of O (mq),

recursive Cauchy with partial covariance O (mq), recursive Cauchy with partial eigenvectors O (mq 2), recursive mean O (q),

because only the winning cluster is adapted, recursive covariance matrix O (q 2), adding clusters O (m), and the complexity of

O (q) + O (q 2) + O (q 3) for merging the clusters.

5. Validation of the eCauchy algorithm on practical examples

5.1. Clustering problem example

To show the use of eCauchy method for clustering problems, the data that are shown as the time courses of variable

x 1 and x 2 in Fig. 4 are used. The measured samples come from different processes and this results in data that belong

to different clusters. Although the clusters can be of different forms, the most robust solution can be found by using the

Euclidean distance, or the identity matrix as the inner norm, A

A A

j = I I I , j = 1 , . . . , m . The Mahalanobis distance suffers from

singularity problems according to the inverse of covariance matrix. The density threshold to add a new cluster is defined as

	max = 0 . 5 . The results of clustering are depicted in Fig. 5 . Some outliers are also present in the data, which do not influence

the partitioning. The time course of cluster centers for different clusters as they appear during the evolving procedure are

given in Fig. 6 .

The clusters in Fig. 5 can also be merged if very similar clusters according to the chosen merging criteria are encountered.

The merged clusters are given in Fig. 7 . In the figure, the probability areas of so-called 3 σ are also plotted. This means that

this area covers 99.7% of all data samples.

5.2. Function approximation – Example I

As an example of function regression, the function

x 2 = 4 sin (0 . 05 x 1) exp (−0 . 05 x 1)

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 549

Fig. 4. The time course of variables x 1 and x 2 where the measured samples come from different processes (defined by different clusters).

Fig. 5. The clusters in the case of eCauchy clustering without merging the clusters (with probability area of 3 σ).

Fig. 6. The time course of cluster centers for different clusters in the case of classification.

550 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Fig. 7. The clusters in the case of eCauchy clustering after merging the clusters (with probability area of 3 σ).

Fig. 8. The approximation of the function.

is used, where x 1 = kT s , with k = 0 , . . . , 200 and T s = 0 . 5 . The noise with characteristics N (0 , 0 . 01) was added to the output

of the function together with some outliers. The whole dataset is shown by + markers in Fig. 8 . As can be noticed, a large

number of outliers is present.

A semi-evolving strategy was used to identify the data stream on-line. The lower and the upper boundary values for

density (for putting a sample in the buffer) are defined as 	min = 0 . 4 and 	max = 0 . 5 . The buffer with the size of 3 samples

is utilised. In this case the normalized partial eigenvectors matrix with variance σ 2
l

= 0 . 09 is used as inner matrix norm.

In Fig. 8 , the function approximation obtained by the proposed algorithm is given in blue. It is shown that the outliers are

completely ignored, and the approximation does not depend on them. The approximation is very robust and deterministic.

This cannot be obtained by using the identity matrix as the inner norm.

The clusters with the centers and the probability region of 3 σ for the function approximation problem are shown in

Fig. 9 . The cluster centers together with the covariance matrices define the local linear models that approximate the function

x 2 = f (x 1) . The local models and centers together with samples that belong to a certain cluster are presented in Fig. 10 . In

Fig. 11 , the time course of cluster centers for different clusters in the case of function approximation is given, for both

variables, x 1 and x 2 .

5.3. Example of mapping on real laser range finder data

The laser range finder (LRF) or LIDAR, which stands for Light Detection and Ranging, is a remote sensor that uses light

in the form of a pulsed laser to measure variable distances to the obstacles from which the light is reflected. In the case of

2D laser range finder the data stream of reflected points belongs to consecutive laser rays that are sent to the environment

from a starting angle and they increment equidistantly to a final angle, and they lie in the same plane. The LRF is a very

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 551

Fig. 9. The clusters with the centers and the probability region of 3 σ for the function approximation problem.

Fig. 10. The cluster centers with local linear models in the case of the function approximation problem.

popular sensor for mapping purposes in mobile robotics. This is because of good coverage, dense information, high accuracy,

and a high sampling rate. The information from LRF can be used for localization purposes, map building, or simultaneous

localization and mapping (SLAM). The robot pose can be estimated by using the data from the LRF and comparison with the

given map of the environment. The comparison is usually based on simple geometric features that are extracted from the

data obtained from the LRF. The simplest features are straight lines. The first task in the localization or mapping procedure

is therefore the extraction of existing lines. This task generally requires two phases: the phase of data clustering to find

the points that can be described by a line and the phase of a line-parameter estimation. In dealing with the points from a

2D LRF, the first step of the procedure can be simplified, because the clusters always consist of consecutive points, i.e. the

points are sorted in the data stream.

The proposed eCauchy clustering involves a procedure that can cluster the data and estimate the parameters in a single

compact, procedure. The experimental results are obtained on a 2D scans from a SICK LMS200, which is of the LiDAR class,

and therefore provide the range information for a 2D map. The use of the proposed method with some modifications can

be seen in more detail in [23] .

When we are trying to find linear features in the data space, the most appropriate choice of inner matrix norm is the

normalized partial eigenvectors matrix. In our case, the variance σ 2
l

= 0 . 01 was used to normalize the density in the latent

direction. To avoid overly large clusters in the direction of the main eigenvector, the density was separately calculated in

the main direction with σ 2
m

= 1 . The sample, therefore, belongs to a particular cluster if the density in the latent direction

is greater than 	l
max = 0 . 48 and in the main direction greater then 	m

max = 0 . 40 ; otherwise a new cluster is initialized.

In Fig. 12 , the normalized real LRF data are plotted. The detected clusters together with centers are given in Fig. 13 . In

Fig. 14 , the detected centers and cluster centers with probability area of 3 σ are given. In Fig. 15 , the detected clusters and

estimated objects in the space are presented with line segments.

552 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Fig. 11. The time course of cluster centers for different clusters in the case of the function approximation.

Fig. 12. The normalized raw data from the LRF.

5.4. Benchmark on Mackey–Glass time series

The method was also tested on a Mackey–Glass (M–G) time series prediction. The chaotic time series is generated from

the M–G differential delay equation defined by the following equation:

˙ x (t) =

0 . 2 x (t − τ)

1 + x 10 (t − τ)
− 0 . 1 x (t) (28)

The aim is to use past values of x to predict some future value of x . We assume x (0) = 1.2, τ= 17 and the value of the signal

is predicted 85 steps ahead, based on the values of the signal at the current moment, 6, 12, and 18 steps back.

Out put : [x (t + 85)] (29)

Input : [x (t − 18) x (t − 12) x (t − 6) x (t)] (30)

In this example, 30 0 0 data points at t ∈ [201, 3200] were created for the training, and 500 at t ∈ [5001, 5500] were

created for the testing, the same as in [21] . The fuzzy model evolved during the first 30 0 0 data samples and then this model

was used to predict the output for the 500 testing samples. The results from other methods are taken from [12,21] and

are shown in Table 2 in which notation eC e represents the eCauchy method with the Euclidean distance and eC m

with

the Mahalanobis distance. The settings for the Euclidean distance were the following: 	max = 0 . 95 , 	min = 0 . 001 . For the

Mahalanobis distance: 	max = 0 . 6 , 	min = 0 . 001 , and α = 1 for the result with 8 clusters; for the result with 41 clusters, the

parameters were set as 	max = 0 . 6 , 	min = 0 . 5 , and α = 0 . 05 ; and for the results with 61 clusters, 	max = 0 . 55 , 	min = 0 . 1 ,

and α = 0 . 02 . In all cases, the minimal number of samples that the clusters must have was set to 10, and the size of the

buffer was 30 samples. The local models were identified by least squares.

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 553

Fig. 13. The detected clusters with the centers.

Fig. 14. The detected clusters with centers and the contour with probability area of 3 σ .

Fig. 15. The detected clusters with centers and lines.

554 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Table 2

Results for Mackey–Glass time series.

Method Rules RMSE

DENFIS [21] 58 0.0628

DENFIS [21] 27 0.0920

exTS 10 0.0754

eTS + 10 0.0892

eTS [2] 113 0.0217

rGK [12] 58 0.0481

rGK [12] 10 0.0862

rFCM [10] 10 0.1039

rFCM [10] 58 0.0702

rFCM [10] 100 0.0285

eFuMo [12] 21 0.0753

eFuMo [12] 41 0.0316

eFuMo [12] 68 0.0224

RAN 113 0.0854

ESOM 114 0.0729

EFuNN 193 0.0913

eC e 24 0.0374

eC m , 	max = 0 . 6 , 	min = 0 . 001 8 0.0989

eC m , 	max = 0 . 6 , 	min = 0 . 5 41 0.0297

eC m , 	max = 0 . 55 , 	min = 0 . 1 61 0.0243

eC m -noise 12 0.0866

Fig. 16. MG noise data compared to non-noise data.

We can see that the presented method gives results that are very comparable to the other methods, especially to those

with a reasonable number of clusters. Even with the added noise (eC m

-noise), the eCauchy method produces reasonably

good results. The result eC m

-noise represents the accuracy of the obtained model on a test dataset. The learning dataset

was corrupted with noise and outliers. On each input and output variable, a Gaussian noise of variance 0.01 was added

independently. Additionally, 2% of the data were corrupted with the Gaussian noise of variance 1. The comparison of the

corrupted and original output is shown in Fig. 16 .

5.5. Function approximation – Example II

In this subsection we treat the benchmark problem defined in [46] . A dynamical system is given by the difference equa-

tion:

y (k + 1) =

ay (k)

(1 + by (k) 2)
+ cu (k) 3 (31)

where y (k) and u (k) are the system output and system input, respectively. The parameters a, b , and c were all set to 1. The

input to the model is defined as u (k) = sin

(
2 π k

100

)
. As in [46] , the learning set included 50,0 0 0 data points, and 200 data

points were used for the testing. In Table 3 , the results are given for the modeling of the dynamical system given by Eq. (31) .

The parameters for the Euclidean distance were set as 	max = 	min = 0 . 85 ; and for the Mahalanobis distance as 	max =
	min = 0 . 7 and α = 0 . 02 . In both cases, the minimal number of samples in a cluster was set to 10, and the size of buffer

was 30 samples. The local models were identified by least squares. In this case, it can be observed that the Mahalanobis

distance gives much better results than the Euclidean distance. The accuracy of the method is not as good as, for example,

with the eFuMo method but is comparable to the methods SAFIS, SOFIN, and eTS.

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 555

Table 3

Results for the modeling of the dynam-

ical system given by Eq. (31) .

Method Clusters RMSE

SAFIS [38] 8 0.0116

MRAN [19] 10 0.0129

RANEKF [47] 11 0.0184

simpl _ eTS 18 0.0122

eTS [2] 19 0.0082

SONFIN [18] 10 0.013

SAFIN [46] 13 0.007

eFuMo [12] 12 0.0035

eC e 17 0.0224

eC m 11 0.0119

Table 4

Results for regression problem under different noise levels.

Noise std. Clusters mean RMSE mean RMSE std. dev.

0.001 9.36 0.0072 0.0011

0.005 9.84 0.0057 0.0011

0.01 11.36 0.0064 0.0 0 078

0.03 14.74 0.0107 0.0021

0.06 16.16 0.0152 0.0 0 089

Table 5

Results for regression problem with different number of outliered

data.

% of outliers Clusters mean RMSE mean RMSE std. dev.

5% 9.86 0.008 0.0046

10% 10.22 0.0081 0.0031

20% 10.12 0.0093 0.0027

30% 10.56 0.01 0.0051

50% 9.3 0.015 0.0052

Noise performance study for function approximation example II

The presented methodology performance was evaluated on a test using the same system as in function approximation

example II, but with the learning data corrupted with Gaussian noise of different variances. For the learning set, 10,0 0 0 data

samples were used that were corrupted by Gaussian noise of the following standard deviations: 0.0 01, 0.0 05, 0.01, 0.03, and

0.06. The data were normalized before the noise was added. The RMSE was evaluated on a normalized non-noisy dataset

of 200 samples. The 	max and 	min were set to 0.45 for all tests, and the Mahalanobis distance was used. The results are

presented in Table 4 . For each noise level, 50 tests were made. The table shows the mean number of clusters generated,

mean RMSE value obtained and standard deviation of the RMSE value. For the described experimental setup, the RMSE

value on a original data was 0.0077, and 8 clusters were generated.

The method was further tested for outliers with the same setup. Again, the learning dataset was corrupted by Gaussian

noise. In this case the standard deviation of the noise was 0.3. However, in this case only a certain percentage (5%, 10%,

20%, 30%, and 50%, respectively) of the data was corrupted. The positions of the corrupted data were chosen randomly. The

results are presented in Table 5 .

5.6. Box–Jenkins example

The results for the Box–Jenkins gas-furnace benchmark data are presented. Two different experimental setups are treated.

In the first case, all the data are used for testing and validation as described in [40] . The error is calculated for the next

sample (one-step ahead prediction), and the results are summarized in Table 6 . Next, as described in [41] , the first 200

data points are used for the learning and the remaining 90 data points are used for the validation. The results are given in

Table 7 . For both experiments, the design parameters were the same: for the Euclidean distance 	max = 0 . 9 and 	min = 0 . 1 ;

and for the Mahalanobis distance 	max = 0 . 5 , 	min = 0 . 48 , and α = 1 . The minimal number of samples in the cluster was

set to 5, and the buffer size to 10 samples.

In this example, the presented method gave very good results in comparison to other methods. In the first experimental

setup, only DENFIS was better but with much more clusters; and in the second experimental setup only eFuMo was better

but with one cluster more.

556 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Table 6

Results for Box–Jenkins gas furnace

data in which all the data are used for

training and validation.

Method Clusters RMSE

DENFIS [21] 12 0.0190

eFuMo [12] 3 0.0337

ANYA [5] 7 0.0393

ELM [17] 20 0.0232

eHFN [39] 7 0.0245

eNNEL [40] 7 0.0354

eC e 4 0.0258

eC m 3 0.0257

Table 7

Results for Box–Jenkins gas-furnace

data in which 200 data points are used

for training.

Method Clusters RMSE

eTS [2] 5 0.0490

simpl _ eTS 3 0.0485

SOFNN [25] 4 0.0480

SOFMLS [41] 5 0.0474

eFuMo [12] 4 0.0433

eC e 3 0.0457

eC m 3 0.04 4 4

Table 8

Results for Rolling-Mill example.

Method MAE Clusters # AE > 20

Analytical 7.84 1 259

Static fuzzy models 6.76 N/A 176

OS-ELM 6.31 30 175

FAOS-PFNN 5.53 24 156

FLEXFIS (conv. EFS) 5.41 N/A 159

FLEXFIS (conv. EFS) 4.65 N/A 68

Gen-Smart-EFS 4.28 24 45

Gen-Smart-EFS 4.28 24 45

Gen-Smart-EFS 4.28 18 47

Gen-Smart-EFS 4.34 12 53

eC m 5.17 2 257

eC e 5.19 2 157

eC e 5.09 8 129

5.7. Rolling-Mill example

In this example, a Rolling-Mill dataset as presented in [31] is used. The goal is to predict the resistance value of a steel

plate in a Rolling-Mill; 11 measurement variables are recorded per second in addition to the resistance value. Two datasets

with 6503 and 6652 samples, respectively, recorded at two different points of time (2 months apart) have been recorded

and stored in the same order as they appeared on-line. The first dataset was used only for learning the model, whereas

with the second dataset the one-step-ahead predictions were made before adapting the model (as in [31]). Table 8 shows

the results in terms of the one-step-ahead mean absolute error (MAE) on the test dataset. The last column indicates the

extreme deviation values (more than 20 units of absolute error). The settings for the Euclidean distance that produced two

clusters were the following: 	max = 	min = 0 . 55 . The minimal number of samples was set to 50 and the buffer size to 100

samples. The same settings were used for the Mahalanobis distance with the difference in 	max and 	min values that were

set to 0.25. For the Euclidean distance with 8 clusters, the buffer size was set to 20 samples and minimal number of samples

to 5; 	max and 	min remained the same. In this case, the Euclidean distance produced better results than Mahalanobis norm.

Although the average mean error is lower, there are more predictions with high absolute error (last column of Table 8).

5.8. Classification of Iris data

In this example, the standard benchmark test was made on the classification of the Iris data. The Iris dataset is a well-

known dataset including four features and three classes and enjoys great popularity in the pattern recognition community

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 557

Fig. 17. Iris classification accuracy over multiple runs and cluster evolution using Mahalanobis distance.

for comparing classification approaches. The goal is to recognize the species of flowers (setosa, versicolor, and virginica)

based on length and width criteria of their blossoms. The data consists of 150 samples. The algorithm was learned and

tested on-line, meaning that first the classification was made, and then the data sample was used to update the classifier.

The classification error was calculated for 150 samples. The data was fed to the algorithm multiple times. Fig. 17 shows

the improvement of the classifier over multiple runs and the evolution of clusters. The parameters were set to 	max = 0 . 6 ,

	min = 0 . 58 , α = 0 . 5 , buffer size 20 and minimal samples 10. The accuracy achieved by the classifier at the end of the

experiment was 0.98, which is an accuracy that can be easily compared with other classifiers’ accuracies.

Noise performance study for classification of Iris data

The noise performance of the methodology was tested on the Iris dataset. The testing set and the learning set were

comprised of the same data. However, the learning set was corrupted by noise and outliers in the same manner as with

the regression test. For learning, the method performed 20 sweeps through the learning data. The learning then stopped,

followed by testing on 150 test samples. The method settings were the same for all tests: 	max = 	min = 0 . 45 , and the

Mahalanobis distance was used with α = 0 . 5 . Table 9 represents the average generated clusters, mean accuracy and standard

deviation of accuracy for different noise levels. The table also represents the minimal, mean, and maximal obtained purity

of clusters. The purity of a cluster is calculated as:

p i =

n ii

n i

(32)

where n i is the number of data assigned to cluster i while n ii is the number of data assigned to cluster i with the correct

label. For non-noisy data the obtained accuracy was 0.97, and 3 clusters were created. The purity for two clusters was 1,

and for the third cluster 0.9091. The results for tests on outliers are presented in Table 10 .

558 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Table 9

Results for Iris classification problem under different noise levels.

Noise std. dev. Clusters mean Min/Mean/Max Cluster Purity Mean Accuracy Accuracy std. dev.

0.001 3 0.9091/0.9806/1 0.9795 0.0023

0.005 3 0.9091/0.9712/1 0.9689 0.0042

0.01 3 0.9091/0.9708/1 0.9684 0.0035

0.03 3 0.8929/0.9717/1 0.9697 0.0062

0.06 3 0.0152 0.9074/0.9693/1 0.0036

Table 10

Results for Iris classification problem with different percentages of outliers.

% of outliers Clusters mean Min/Mean/Max cluster purity Mean accuracy Accuracy std. dev.

5% 2.92 0.5/0.9611/1 0.9476 0.0839

10% 2.82 0.5/0.9403/1 0.9113 0.1159

20% 2.72 0.5/0.9237/1 0.882 0.1357

30% 2.5 0.5/0.8784/1 0.8137 0.1492

50% 2.18 0.5/0.7989/1 0.7161 0.1082

Table 11

Results for digit recognition.

Method Clusters Accuracy

FLEXFIS-Class SM 16 0.8877

FLEXFIS-Class MM 61 0.9623

CART NA 0.9768

k-NN NA 0.9740

eC e 76 0.8759

eC m 71 0.9380

5.9. Pen-based recognition of handwritten digits

This dataset from the UCI repository was created by collecting 250 samples from 44 writers, which were generated

with the use of a pressure sensitive tablet with an integrated LCD display and a cordless stylus. The dataset contains 16

features, 7494 training data samples, and 3498 test data samples, containing ten different classes (for the ten digits) which

are almost equally distributed in both training and test dataset. Principally, this dataset is an off-line batch dataset. However,

we simulate it as an on-line pseudo-stream by performing a loading of data samples and evolve the fuzzy classifiers with

each new incoming point separately. The obtained results are compared with the results obtained in [27] in Table 11 . Fig. 18

shows the evolution of clusters (bottom graph) and accuracy of the classifier depending on the number of processed samples

from the learning set (top graph). The end results obtained by the presented method are not as good as the results of the

other four methods. However, the graph in Fig. 18 shows that the top performance using the Mahalanobis distance was

around 0.96 with 63 clusters, which is similar to the performance of the F LEXF IS − ClassM M method.

5.10. Egg classification

In this example, the goal is to classify the eggs into two classes: broken eggs and not broken eggs. The inspection is

made using image analysis. For each egg, an image is taken and different characteristics are calculated. In total 19 inputs

are used to classify the eggs [28] . The labels were provided by quality control experts. A set of 2895 samples was used for

training, and 2302 samples were used for the evaluation of the classifier performance. The results are compared to results

reported in [28] and are given in Table 12 . The information about the number of clusters was not available for the compared

methods. The settings for the minimal number of samples and buffer size were the same for both distances and were set

to 5 and 10 samples, respectively. For both distances, parameters 	max and 	min were set to 0.6 and 0.58, respectively. The

parameter in case of the Mahalanobis distance was set as α = 0 . 5 .

6. Discussion

This paper presents a common evolving framework for on-line clustering, classification, and regression tasks based on

Cauchy density and its modifications. The paper also presents different inner matrix norms. The results show that the inverse

of the partial covariance matrix and partial eigenvectors matrix can sometimes be beneficial, especially in a low dimension

problem and when the regressors are linearly independent. For the general case, it seems that the use of either the Ma-

halanobis or Euclidean distance is more advisable since we could not obtain good enough results for benchmark problems

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 559

Fig. 18. Classification accuracy of digits test set depending on the number of processed samples of learning set and cluster evolution using Mahalanobis

distance.

Table 12

Results for egg classification.

Method Clusters Accuracy

FLEXFIS-Cl. SM NA 0.8801

FLEXFIS-Cl. SM with LOFO NA 0.9011

FLEXFIS-Cl. SM with feat.-wise NA 0.9155

FLEXFIS-Cl. MM NA 0.9412

FLEXFIS-Cl. MM with LOFO NA 0.9655

FLEXFIS-Cl. MM with feat.-wise NA 0.9722

eC e 22 0.9666

eC m 13 0.9674

with a partial covariance matrix and partial eigenvectors matrix. In most cases, the density measure based on the Euclidean

distance produced slightly worse results than the Mahalanobis norm. However, the Euclidean norm is more robust and

easier to tune. The problem with the Mahalanobis norm is in the initialization of the covariance matrix (factor α), which

strongly influences the results. Furthermore, the Mahalanobis norm is more sensitive to linear dependency among the in-

put variables. The presented eCauchy methodology is based on non-normalized values of densities and employs a winner

takes all (if it is close enough) policy. This makes the method slightly less accurate (especially in regression problems) in

comparison to methods that employ normalization (e.g. eFuMo), but in contrast, the method is less affected by noisy data

and outliers. From the mathematical point of view, the hyperplane procedure for the identification of local models is a very

elegant solution. However, in practice, there are some problems that affect the performance of the model. The method usu-

ally works fine for small dimensional static problems for which the inputs are carefully chosen to avoid linear dependency

560 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

Fig. 19. Classification accuracy of test set depending on the number of processed samples of learning set and cluster evolution for egg classification

example.

among them. The method is also susceptible to the scales of the variables. To achieve good results the variables should have

the same range. In this sense, the recursive least squares method is more robust and more suitable for practical applications

(Fig. 19).

There are several high-dimensional data streams tested with the results reported in Section 5 , where it turned out that

our method achieved comparable or even better performance than several SoA (i.e. State-of-the-Art) methods – for the

purpose of clarity an overview table over the data streams and their characteristics is given in Table 13 . The overview of

results over different streaming datasets is given regarding the number of features, number of used samples, number of

generated classes (and output errors in the case of regression), noise level, type of data stream, and the average calculation

time over the number of clusters.

In Table 14 the performance of the proposed method is evaluated. The accuracy improvement over the best SoA method

subject to respecting the eventual complexity increase is given for different datasets. For example, for Box–Jenkins gas fur-

nace results, the best SoA method regarding accuracy is DENFIS with 0.0190, thus the performance improvement regarding

our method is -35% (thus, an accuracy decrease), however the complexity is reduced from 12 to 3 clusters by the proposed

method thus by 75%, hence the entry is -35/75. At the end, the average improvement over the best SoA method is given for

each dataset. It is shown that the proposed method gives slightly worse accuracy with lower complexity of the model.

Future work will focus on the inverse of the partial covariance matrix and partial eigenvectors matrix norms. In this

paper only latent vector was used to form a norm. This did not work well for higher dimensional problems. However,

including more eigenvectors might improve results for higher dimensions and also form a mechanism for feature extraction.

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 561

Table 13

An overview table of results obtained by eCauchy method over different data streams and their characteristics.

Data stream Features Samples Classes Noise level Comment Average time

Classification Number

Iris data 4 150–4050 3 Low Real benchmark 0.3 ms

Iris data 4 150–4050 3 Low added Real benchmark 0.3 ms

Iris data 4 150–4050 3 Medium added Real benchmark 0.4 ms

Iris data 4 150–4050 3 High added Real benchmark 0.5 ms

Pen-based recognition 16 7494 10 Medium Real data 8 ms

Eggs classification 19 2895 2 Low Real data 2 ms

Laser data 2 180 5 Low Real data 0.2 ms

Clustering example 2 80 5 Low Artificial data 0.2 ms

Regression Error (min-max, std)

Mackey–Glass time series 5 30 0 0 0.42 - 1.31, 0.22 None Simulated benchmark 0.6 ms

Mackey–Glass time series 5 30 0 0 −1.11 - 3.29, 0.26 Medium added Simulated benchmark 0.6 ms

Function example I 2 200 −5.79 - 10.18, 1.73 High Simulated benchmark 0.2 ms

Function example II 2 10,0 0 0 −4.17 - 4.04, 0.94 Low added Simulated benchmark 1.2 ms

Function example II 2 10,0 0 0 −4.50 - 4.25, 1.24 Medium added Simulated benchmark 1.2 ms

Box–Jenkins example 4 50,0 0 0 45.60 - 60.50, 3.20 None Simulated benchmark 1.2 ms

Rolling mill 7 13,155 50.35 - 311.97, 74.21 Medium Real data 2 ms

Table 14

Comparison between the best SoA methods and the proposed method.

Dataset Dimensionality of learning problem Accuracy/complexity comparison with best SoA method (in %)

Box–Jenkins example2 4 −2.5/25

Box–Jenkins example1 4 −35/75

Rolling-Mill 7 −19/89

Mackey–Glass time series 5 −11/47

Eggs classification 19 −0.5/NA

Pen-based recognition 16 −2.5/ −16

Average improvement −15.5/38

7. Conclusion

The main contribution of the proposed paper is to present the method which unify and generalize the evolving clustering

based on Cauchy density. The proposed approach can deal with different classification or regression problems easily, just by

using suitable inner matrix norm in the density definition. The used normalized Cauchy density enables very easy tuning of

important thresholds of the method, 	min and 	max , which are then very similar for a wide range of different problems and

therefore can be easily tuned. The proposed method represents a very successful framework for a wide range of problems

and can easily cope with problems with outliers, noise, clusters of different volumes and different shapes. The evolving

nature makes the algorithm suitable for big-data problems. The basic features of the proposed algorithm were presented

on simple school examples, selected benchmark problems, and on real data streams. The obtained results are collected in

Table 14 where the comparison between the proposed method and the main state-of-the-art methods is given. The compar-

ison is given for different data streams and different methods. For each data stream the best method is detected according

to the accuracy and complexity and compared to the proposed method. It is shown that in average our method follows

the best solutions (i.e. in average just 15% behind the best method for each data stream) with much lower complexity. The

proposed method offers framework for classification and regression problems.

Acknowledgements

This work has been supported by Slovenian Research Agency with the research programme P2-0219, Modelling, simu-

lation and control and the Austrian COMET-K2 (K24301) program of the Linz Center of Mechatronics (LCM), funded by the

Austrian federal government and the federal state of Upper Austria, and of the Linz Austrian research funding association

(FFG) within the scope of the programme IKT of the future, the project of Generating process feedback from heterogeneous

data sources in quality control.

Appendix A

Further developing of the summation from Eq. (2) is performed by adding and subtracting the column vector of cluster

mean value μμμ j to the factors on both sides of the inner matrix norm A

A A

j :

M

j ∑

i =1

(z z z (k) − z z z j
i
) T A

A A

j (z z z (k) − z z z j
i
) = M

j (z z z (k) −μμμ j) T A

A A

j (z z z (k) −μμμ j)

https://doi.org/10.13039/501100004955

562 I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563

−2

M

j ∑

i =1

(z z z j
i
−μμμ j) T A

A A

j (z z z (k) −μμμ j)

+

M

j ∑

i =1

(z z z j
i
−μμμ j) T A

A A

j (z z z j
i
−μμμ j) (33)

where

μμμ j =

1

M

j

M

j ∑

i =1

z z z j
i

(34)

is defined as the center of the j th cluster and where lower and upper index at z z z
j
i

define i th sample in j th cluster. It is easy

to show that the last term of Eq. (33) is identical to

M

j ∑

i =1

(z z z j
i
−μμμ j) T A

A A

j (z z z j
i
−μμμ j) = (M

j − 1) trace (A

A A

j ��� j) (35)

where

��� j =

1

M

j − 1

M

j ∑

i =1

(z z z j
i
−μμμ j)(z z z j

i
−μμμ j) T (36)

represents the covariance matrix of j th cluster which has M

j samples. The second term in Eq. (33) is identical to 0 due

to the definition of μμμ j in Eq. (34) . The notation of the covariance matrix of the j th cluster can be also written as ��� j

M

j
to

explicitly express that the covariance was calculated for M

j samples. The weighted Cauchy density in Eq. (2) therefore takes

the form which is suitable for recursive implementation (similar as in [9]).

Appendix B

To calculate different densities proposed in Section 2 , the cluster covariance matrix is needed. The definition of covari-

ance matrix (36) is not suitable for implementation in the recursive identification algorithm because all past cluster data

are needed. For an on-line identification algorithm, the covariance matrix must be calculated recursively. In the presented

approach a sample is either fully assigned to a certain cluster or it is not assigned at all (and treated as an outlier or a

new cluster depending on a problem). When a new data sample, denoted as z z z (k) , is assigned to the j th cluster, the number

of samples is incremented, and the mean and the covariance matrix are updated [9] . In order to make the notation clear,

cluster center will be denoted as μμμ j

M

j
where needed, to specify that the j th cluster consists of M

j samples.

First, the difference between the current sample and the current mean value is calculated as:

e e e j
M

j = z z z (k) −μμμ j

M

j (37)

Next, the mean is updated

μμμ j

M

j +1
= μμμ j

M

j +

1

M

j + 1

e e e j
M

j (38)

After that, the un-normalized covariance matrix is computed:

S S S j
M

j +1
= S S S j

M

j + e e e j
M

j (z z z (k) −μμμ j

M

j +1
) T (39)

The covariance matrix is then obtained as:

��� j

M

j +1
=

1

M

j
S S S j

M

j +1
(40)

It should be mentioned that the covariances of the clusters are calculated with the winner-takes-all approach. The states

(μμμ j and S S S j) of this algorithm are initialized with zeros, which can lead to the problem of invertibility of ��� j in the early

phase. To avoid this, S S S j can be initially set to the identity matrix multiplied by a small positive number.

References

[1] J. Abonyi , B. Feill , Cluster Analysis for Data Mining and System Identification, Birkhuser Basel, 2007 .
[2] P. Angelov , D.P. Filev , An approach to online identification of Takagi–Sugeno fuzzy models, IEEE Trans. Syst. Man Cyber. Part B 34 (1) (2004) 4 84–4 97 .

[3] P. Angelov , P. Angelov , D. Filev , A. Kasabov , Evolving Takagi–Sugeno fuzzy systems from streaming data (ets+), in: Evolving Intelligent Systems: Method-

ology and Applications, in: IEEE Press Series on Computational Intelligence, John Willey and Sons, 2010, pp. 273–300 .
[4] P. Angelov , R. Yager , Simplified fuzzy rule-based systems using non-parametric antecedents and relative data density, in: 2011 IEEE Workshop on

Evolving and Adaptive Intelligent Systems (EAIS), 2011, pp. 62–69 .
[5] P. Angelov , R. Yager , A new type of simplified fuzzy rule-based system, Int. J. Gen. Syst. 41 (2) (2011) 163–185 .

[6] P. Angelov , X. Gu , G. Gutierrez , J.A. Iglesias , A. Sanchis , Autonomous data density based clustering method, in: The bi-annual IEEE World Congress on
Computational Intelligence (IEEE WCCI), 2016, pp. 1–9 .

http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0006

I. Škrjanc, S. Blaži ̌c and E. Lughofer et al. / Information Sciences 478 (2019) 540–563 563

[7] R. Babuška , P.J. van der Veen , U. Kaymak , Improved covariance estimation for Gustafson-Kessel clustering, in: FUZZ-IEEE’02. Proceedings of the 2002
IEEE International Conference on Fuzzy Systems, 2002, Honolulu, HI, 2002, pp. 1081–1085 .

[8] J.C. Bezdek , Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981 .
[9] S. Blaži ̌c , D. Dovz ̌an , I. Skrjanc , Cloud-based identification of an evolving system with supervisory mechanisms, in: IEEE Control Systems Society

Multiconference on Systems and Control, Nice/Antibes, France, 2014, pp. 1906–1911 .
[10] D. Dovžan , I. Škrjanc , Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes, ISA Trans. 50 (2) (2011) 159–169 .

[11] D. Dovžan , I. Škrjanc , Recursive clustering based on a Gustafson-Kessel algorithm, Evol. Syst. 2 (2011) 15–24 .

[12] D. Dovžan , V. Logar , I.v. Skrjanc , Implementation of an evolving fuzzy model (efumo) in a monitoring system for a waste-water treatment process,
IEEE Trans. Fuzzy Syst. 23 (5) (2015) 1761–1776 .

[13] J.C. Dunn , A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster, J. Cybern. 3 (1974) 32–57 .
[14] D. Filev , O. Georgieva , An extended version of the Gustafson-Kessel algorithm for evolving data stream clustering, in: P. Angelov, D. Filev, A. Kasabov

(Eds.), Evolving Intelligent Systems: Methodology and Applications, IEEE Press Series on Computational Intellegence, John Willey and Sons, 2010,
pp. 273–300 .

[15] D.E. Gustafson , W.C. Kessel , Fuzzy clustering with a fuzzy covariance matrix, in: IEEE CDC, San Diego, CA, USA, 1979, pp. 761–766 .
[16] F. Hoppner , F. Klawon , Improved fuzzy partitions for fuzzy regression models, J. Approximate Reasoning 32 (2003) 85–102 .

[17] G. Huang , Q. Zhu , C. Siew , Extreme learning machine: a new learning scheme of feedforward neural networks, in: IEEE International Joint Conference

on Neural Networks, 2004, pp. 985–990 .
[18] C.F. Juang , C.T. Lin , An on-line self-constructing neural fuzzy inference network and its applications, IEEE Trans. Fuzzy Syst. 6 (1) (1998) 12–32 .

[19] V. Kadirkamanathan , M. Niranjan , A function estimation approach to sequential learning with neural networks, Neural Comput. 5 (6) (1993) 954–975 .
[20] N. Kasabov , Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning, IEEE Trans. Syst. Man Cyber. Part B 31 (6)

(2001) 902–918 .
[21] N. Kasabov , Q. Song , DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction, IEEE Trans. Fuzzy Syst. 10

(2) (2002) 144–154 .

[22] U. Kaymak , M. Setnes , Fuzzy clustering with volume prototypes and adaptive cluster merging, IEEE Trans. Fuzzy Syst. 10 (6) (2002) 705–712 .
[23] G. Klan ̌car , I.v. Skrjanc , Evolving principal component clustering with a low run-time complexity for LRF data mapping, Appl. Soft Comput. 35 (2015)

349–358 .
[24] R. Krishnapura , J.M. Keller , Possibilistic approach to clustering, IEEE Trans. Fuzzy Syst. 1 (1993) 98–100 .

[25] G. Leng , G. Prasad , T.M. McGinnity , An on-line algorithm for creating self-organizing fuzzy neural networks, Neural Netw. 17 (2004) 1477–1493 .
[26] E. Lima, M. Hell, R. Ballini, F. Gomide, Evolving fuzzy modeling using participatory learning, Evolving intelligent systems: Methodology and Applica-

tions, 2010, Chapter 4, doi: 10.1002/9780470569962.ch4 .

[27] E. Lughofer , P. Angelov , X. Zhou , Evolving single- and multi-model fuzzy classifiers with FLEXFIS-class, in: 2007 IEEE International Fuzzy Systems
Conference, London, 2007, pp. 1–6 .

[28] E. Lughofer , 1–23. , On-line incremental feature weighting in evolving fuzzy classifiers, Fuzzy Sets Syst. 163 (2011) .
[29] E. Lughofer , Dynamic evolving cluster models using on-line split-and-merge operations, in: 10th IEEE International Conference on Machine Learning

and Applications, 2011, pp. 20–26 .
[30] E. Lughofer , A dynamic split-and-merge approach for evolving cluster models, Evol. Syst. 3 (3) (2012) 135–151 .

[31] E. Lughofer , C. Cernuda , S. Kindermann , M. Pratama , Generalized smart evolving fuzzy systems, Evol. Syst. (6) (2015) 269–292 .

[32] E. Lughofer , M. Pratama , I.v. Škrjanc , Incremental rule splitting in generalized evolving fuzzy systems for autonomous drift compensation, IEEE Trans-
actions on Fuzzy Systems, 2018 .

[33] L. Maciel , F. Gomide , R. Ballini , Recursive possibilistic fuzzy modeling, in: Evolving and Autonomous Learning Systems (EALS), 2014 IEEE Symposium
on, IEEE SSCI, Orlando, 2014, pp. 9–16 .

[34] B. Ojeda-Magana , R. Ruelas , M.A. Corona-Nakamura , D. Andina , An improvement to the possibilistic fuzzy c-means clustering algorithm, Intell. Autom.
Soft Comput. 20 (1) (2006) 585–592 .

[35] N.R. Pal , K. Pal , J.M. Keller , J.C. Bezdek , A possibilistic fuzzy c-means clustering algorithm, IEEE Trans. Fuzzy Syst. 13 (4) (2005) 517–530 .

[36] M. Pratama , S. Anavatti , P. Angelov , E. Lughofer , PANFIS: A novel incremental learning machine, IEEE Trans. Neural Netw. Learn. Syst. 25 (1) (2014)
55–68 .

[37] J.A. Ramey , P.D. Young , A comparison of regularization methods applied to the linear discriminant function with high-dimensional microarray data, J.
Stat. Comput. Simul. 83 (3) (2013) 581–596 .

[38] H.J. Rong , N. Sundararajan , G.B. Huang , P. Saratchandran , Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and
prediction, Fuzzy Sets Syst. 157 (9) (2006) 1260–1275 .

[39] R. Rosa , R. Ballini , F. Gomide , Evolving hybrid neural fuzzy network for system modeling and time series forecasting, in: IEEE International Conference

on Machine Learning and Applications, Miami, 2013, pp. 4–7 .
[40] R. Rosa , F. Gomide , D. Dovžan , I. Škrjanc , Evolving neural network with extreme learning for system modeling, in: Proceedings of The 2014 IEEE

Conference on Evolving and Adaptive Intelligent Systems, Linz, Austria, 2-4 June, 2014, pp. 11–34 .
[41] J. Rubio , SOFMLS: on-line self-organizing fuzzy modified least-squares network, IEEE Trans. Fuzzy Syst. 17 (6) (2009) 1296–1309 .

[42] S.-B. H. , C. Lucas , B.N. Araabi , Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling, in: Evolving Systems, volume 1, Springer,
2010, pp. 59–71 .

[43] I. Škrjanc , Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering, IEEE Trans. Fuzzy Syst. 23 (4) (2015) 861–871 .
[44] I. Škrjanc , D.D. zan , Evolving Gustafson-Kessel possibilistic c-means clustering, INNS Conf. Big Data 53 (2015) 191–198 .

[45] H. Timm , C. Borgelt , C. Doering , R. Kruse , An extension to possibilistic fuzzy cluster analysis, Fuzzy Sets Syst. 147 (1) (2004) 3–16 .

[46] S.W. Tung , C. Quek , C. Guan , SaFIN: a self-adaptive fuzzy inference network, IEEE Trans. Neural Netw. 22 (12) (2011) 1928–1940 .
[47] L. Yingwei , N. Sundararajan , P. Saratchandran , A sequential learning scheme for function approximation using minimal radial basis function (RBF)

neural networks, Neural Comput. 9 (1997) 461–478 .

http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0025
https://doi.org/10.1002/9780470569962.ch4
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0047
http://refhub.elsevier.com/S0020-0255(18)30922-8/sbref0047

	Inner matrix norms in evolving Cauchy possibilistic clustering for classification and regression from data streams
	1 Introduction
	1.1 Possibilistic clustering
	1.2 Evolving recursive clustering for streaming data

	2 Similarity measures in streaming data
	2.1 Identity inner norm
	2.2 Inverse covariance matrix as inner matrix norm
	2.3 Inverse of partial covariance matrix as inner matrix norm
	2.4 Partial eigenvector matrix as inner matrix norm
	2.5 Normalized partial eigenvectors matrix as inner matrix norm
	Example - Calculation of previously defined densities

	3 Identification of the input-output model
	3.1 Estimation of the local model parameters with hyper-plane
	3.2 Fuzzification of local models

	4 Evolving strategies
	4.1 Adding clusters
	4.2 Removing clusters
	4.3 Merging clusters
	4.4 Splitting clusters
	4.5 Computational complexity

	5 Validation of the eCauchy algorithm on practical examples
	5.1 Clustering problem example
	5.2 Function approximation - Example I
	5.3 Example of mapping on real laser range finder data
	5.4 Benchmark on Mackey-Glass time series
	5.5 Function approximation - Example II
	Noise performance study for function approximation example II

	5.6 Box-Jenkins example
	5.7 Rolling-Mill example
	5.8 Classification of Iris data
	Noise performance study for classification of Iris data

	5.9 Pen-based recognition of handwritten digits
	5.10 Egg classification

	6 Discussion
	7 Conclusion
	Acknowledgements
	Appendix A
	Appendix B
	References

